
REST APIs and RPG

Presented by

Scott Klement
http://www.scottklement.com

© 2020-2023, Scott Klement

Fun Fact: If you took everything posted on twitter (X) every day and put it

into a book, that book would be 10 million pages long.

2

The Agenda

1. REST API Concepts
• What is an API?
• What makes an API RESTful?
• Terminology
• URLs, methods, status codes
• XML and JSON messages

2. Consuming APIs
• Working with a testing tool
• What is needed to consume from RPG?
• Samples of the different methods
• A more complex/complete example

3. Providing APIs
• Introduction to the Integrated Webservices (IWS) tool
• Creating an IWS server
• IWS Example
• Introduction to Do It Yourself (DIY)
• Creating an Apache server
• DIY Example

REST API Concepts

4

What is an API?

• A program that you call from other programs

• Example: Program that calculates sales tax, called from
several other programs when they need to have tax
calculated.

• We have all written APIs! IBM provides many with the OS!

API = Application Programming Interface

Technically, any sort of routine (program, subprocedure, SQL function, web
service, etc.) that's designed to be called from another program is an API.

However, in recent years, the term "API" has become short for "REST API",
which is a type of web service.

5

What is a Web Service?

• Typically using the HTTP (or HTTPS) network protocol.

• Not to be confused with a web page or web site!

o No HTML, CSS or JavaScript, here!

o You don’t use a web browser!

A Web Service is an API designed to be called over a network

Useful for:

• Interconnecting applications across systems

• Web page to back-end server (system of record)

• Cloud application to/from traditional on-premises system

• Communication between businesses (EDI-like, B2B e-Commerce)

• Between different packages.

6

Types of Web Services

My observations:

• REST is easily the most popular

• GraphQL may be up-and-coming

• WSDL (SOAP) was the most popular but has nearly died out

January 2004 March 2020
Level of interest over time according to Google Trends

(SOAP)

7

Lets Take An Example

We want to translate text from English to Spanish.

IBM Watson offers language translation on IBM Cloud!

Remember: We’re making a program call using HTTP

Input parameters:

model_id = 'en-es’; // translate English(en) to Spanish(es)

text = 'Hello’; // text to translate

Output parameter:

Translated text: 'Hola’

You can think of it like this:

CALL PGM(TRANSLATE) PARM('en-es' 'Hello' &RESULT)

8

An Example RPG Screen

9

Overview Of An API Call

HTTP starts with a request for the server
• Can include a document (XML, JSON, etc)

• Document can contain "input parameters"

HTTP then runs server-side program
• Sends input doc, waits for program completion

• Returns an output document (XML, JSON, etc)
{

"translations": [{

"translation": "Hola"

}],

"word_count": 1,

"character_count": 5

}

{

"source": "en",

"target": "es",

"text": ["Hello"]

}

Caller / "Consumer"

Server / "Provider"

10

What is the REST Architecture?

REST = REpresentational State Transfer

The concept comes from the doctoral dissertation of Roy Fielding, UC-Irvine
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

The REST architectural style describes six constraints:

1. Uniform Interface
2. Stateless
3. Cacheable
4. Client-Server
5. Layered System
6. Optionally, Code-on-Demand

11

Resource Based

• Things vs. Actions
• Nouns vs Verbs
• vs. SOAP or RPC which are action based
• Resources are identified by URIs

o Possible for multiple URIs to refer to the same resource

• Separate from their representations
o Different shapes of data, or representations, can still represent the same

resource.

12

Representational

• How things are manipulated
• Part of the state of the resource
• Typically represented as JSON or XML (but other forms, such

as CSV are valid)
• Example:

• Resource: person (Scott)
• Service: contact information (GET)
• Representation: name, address, phone, e-mail, etc
• JSON or XML format

13

Uniform Interface

• Defines interface between client/server
• Simplifies and decouples the architecture
• Fundamental to RESTful design
• For us this means:

•HTTP verbs (GET, PUT, POST, DELETE)
•URIs
•HTTP Response (status, body)

14

Stateless

• Server contains no client state
• Each request contains enough context to process the

message.
• Self-descriptive messages

• Any session state is held on the client
• Though, sometimes APIs are only REST-like
• No using QTEMP!!

15

Client / Server

• Assume a disconnected system
• Separation of concerns
• Uniform interface is the link between the
two

16

Cacheable

• Server responses (representations) are cacheable
• Implicitly
• Explicitly
• Negotiated

• For example, server may decide to cache answer rather
than re-read database

• Or It may say how old the item is
• Or the client may request a cached vs non-cached item

17

Layered System

• Client can't assume direct connection to server
(could be cached or handled by an
intermediary)

• Software or hardware intermediaries between
client/server

• Improves scalability

18

Code On Demand (optional)

• Server can temporarily extend client
• Transfer logic to client
• Client executes logic

• Flash
• Java applets
• JavaScript

• This constraint is optional
• Not normally used with APIs

19

REST Architecture Summary

•Violating any means you aren't (strictly speaking) RESTful
• Example: Three-legged OAUTH2

•Compliance with REST constraints allows:
• Scalability
• Simplicity
• Modifiability
• Visibility
• Portability
• Reliability

https://www.restapitutorial.com/

This work by RestApiTutorial.com is licensed under a Creative Commons Attribution-
ShareAlike 4.0 International License.

This architectural information "borrowed" from:

20

Uniform Resource Identifier

• Works Over HTTP
• Specifies which computer/server/device to connect to
• Specifies the resource within that device
• … so whole URI (http://example.com) represents the "resource"

• The thing you are working with
• A "customer" or a "product", etc.
• Unique ID -- like a key
• Best when hierarchical… consider this conceptually:

http://example.com/apis (all apis)
http://example.com/apis/customers (all customers)
http://example.com/apis/customers/1234 (one customer, etc.)
http://example.com/apis/customers/1234/orders
http://example.com/apis/customers/1234/orders/5321
http://example.com/apis/customers/1234/orders/5321/lineItems
http://example.com/apis/customers/1234/orders/5321/lineItems/1

21

Terminology: URL vs URI

• URI = Uniform Resource Identifier
• The more general of the two terms
• Think of it like a "data structure"

• "scheme" (http://) -- identifies a specific type of URI, in this case HTTP
• "node" (example.com) -- identifies the address within the network
• "path" (/apis/customers/1234) -- identifies the resource within the node

• Together, these parts identify something specific
• This is the "noun" in the REST architecture

• URL = Uniform Resource Locator
• More commonly heard
• A specific type of URI
• Identifies how to "locate" or get to something
• Such as a directory on a hard drive

22

HTTP Methods

If the URI specifies the "noun" (the thing/resource you're working with) what specifies the verb?

http://my-server/webservices/cust/1234

The action that's taken on the resource ("the verb") is determined by the HTTP
method. There are four common HTTP methods:

• GET = Retrieve the resource (get customer 1234)

• PUT = Make idempotent changes (update customer 1234)

• POST = Make non-idempotent changes (write customer 1234)

• DELETE = Removes the resource (delete customer 1234)

Idempotent is a term that tends to confuse people. (Not exactly a word you use every day!)

It means you can do it multiple times but have the same result.

23

Idempotence

Idempotence (UK: /ˌɪdɛmˈpoʊtəns/, US: /ˌaɪdəm-/) is the
property of certain operations in mathematics and
computer science whereby they can be applied multiple
times without changing the result beyond the initial
application. The concept of idempotence arises in a
number of places in abstract algebra (in particular, in the
theory of projectors and closure operators) and functional
programming (in which it is connected to the property of
referential transparency).

Wait a minute!
• Suppose you have a cow, but you want more
• You hire a breeding/siring service
• Now you want still more…
• ... can a cow get "more pregnant"?

24

Idempotent vs. Non-idempotent

IdempotentNon-idempotent

Counting your moneyCharging a credit card

Storing a customer's addressCreating an invoice

Updating a recordWriting/inserting a record

Setting a number to 10Adding 10 to a number

If you do the same thing multiple times, and the resulting state is the same, it
is idempotent

If you do things multiple times, and each time it alters the state, it is non-
idempotent.

25

REST/CRUD analogy

An easy way to understand REST is to think of it like Create, Retrieve, Update, Delete (CRUD)
database operations.

http://my-server/apis/customers/1234

• URL = an identifier, like a "unique key" (identity value) that identifies a record. (But also
identifies what type of record, in this case, a customer.)

• GET = Retrieves – much like RPG's READ opcode reads a record

• PUT = Modifies – much like RPG's UPDATE opcode

• POST = Creates – much like RPG's WRITE opcode (or SQL INSERT)

• DELETE = Removes – like RPG's DELETE

Consider the difference between writing a record and updating it. If you update it 100 times, you still have the

one record. If you write (insert) 100 times, you have 100 records. That is idempotent vs. non-idempotent.

26

Messages / Representations

If a URI identifies a resource, then a message is the current representation of that resource.

{
"custno": 495,
"name": "Acme Foods",
"address": {
"street": "1100 NW 33rd Street",
"city": "Pompano Beach",
"state": "FL",
"postal": "33064-2121"

}
}

GET http://my-server/apis/customers/495 POST http://my-server/apis/customers

{
"custno": 1234,
"name": "Scott Klement",
"address": {
"street": "8825 S Howell Ave",
"city": "Oak Creek",
"state": "WI",
"postal": "53154"

}
}

For example, we can get the representation of a customer, or set the representation of a new customer

27

Messages as Parameters

Another way to think of it is to think of the messages as a set of parameters passed to a routine

{
"source": "en",
"target": "es",
"text": ["Hello"]

}

POST https://gateway.watsonplatform.net/language-translator/api

{
"translations": [{
"translation": "Hola"

}],
"word_count": 1,
"character_count": 5

}

Input message ("input parameters") Output message ("output parameters")

A purist might argue that this isn't truly "REST"

• URL doesn't really identify a resource, but a
routine to call.

• Messages don't represent the resource

However, this RPC style of "REST-like" interface
is extremely commonplace and popular. It is a
convenient way to think about things.

REST allows messages in any data format, but XML and JSON are the most popular

Both XML and JSON are widely used in web services / APIs:

• Self-describing.

• Can make changes without breaking compatibility

• Available for all popular languages / systems

XML:

• Has schemas, namespaces, transformations, etc.

• Has been around longer.

• Only format supported in SOAP web services

JSON:

• Natively supported by all web browsers

• Results in smaller documents (means faster network transfers)

• Parses faster.

• Most popular format today

28

Data Formats of Messages (XML and JSON)

29

JSON and XML Messages That Represent Data

Array of data structures
in RPG…

Array of data structures
in JSON

Array of data structures
in XML

D list ds qualified
D dim(2)
D custno 4p 0
D name 25a

[
{

"custno": 1000,
"name": "ACME, Inc"

},
{

"custno": 2000,
"name": "Industrial \"Supply\" Limited"

}
]

<list>
<cust>

<custno>1000</custno>
<name>Acme, Inc</name>

</cust>
<cust>

<custno>2000</custno>
<name>Industrial Supply Limited</name>

</cust>
</list>

In JSON:
‒ [] characters start/end an array
‒ { } characters start/end an "object"

(data structure)
‒ Within an object fieldname: value
‒ Commas separate elements

In XML:
‒ <name></name> represents an

element
‒ <name> is the starting tag
‒ </name> is the ending tag
‒ They can be nested or repeated to

represent structures or arrays

30

Without Adding Spacing for Humans

87 bytes

142 bytes

In this simple "textbook" example, that's a 35% size reduction.

55 bytes doesn't matter, but sometimes these documents can be
megabytes long – so a 35% reduction can be important.

…and programs process JSON faster, too!
…and the syntax is simpler!
…and JSON has become more popular (MUCH) than XML in recent years

[{"custno":1000,"name":"ACME, Inc"},{"custno":2000,
"name":"Industrial Supply Limited"}]

<list><cust><custno>1000</custno><name>ACME, Inc</name
></cust><cust><custno>2000</custno><name>Industrial S
upply Limited</name></cust></list>

31

HTTP Status Codes

• URI identifies the resource we are working with and how to get to it

• HTTP method identifies what operation to perform on the resource

• How do we describe whether the operation succeeded?

• …with http status codes! Here are some examples:

MeaningStatus

Success (general)200

Success (something created)201

Unauthorized; you need to send credentials (such as user/password)401

Forbidden; you sent valid credentials, but aren't authorized to this operation403

Not found; the resource doesn't exist404

Method not allowed; not due to authority -- we never allow this method.405

Error found on server ("catch all" for any unknown error)500

Find more here: https://www.restapitutorial.com/httpstatuscodes.html

32

REST API Concept Summary

• What an API is

• What REST is

• The REST architecture -- the constraints to being "truly" REST

• URIs vs URLs

• Importance of the URI as the "noun" or "resource"

• HTTP methods as the "verb" or "action"

• Idempotence

• Messages as representations of your data

• Using a Remote Procedure Call (RPC) REST-like architecture

• Messages as representations of parameters

• XML and JSON, the most common formats for messages

• HTTP status codes… did it succeed or fail, and why?

Consuming REST APIs from RPG

34

How Can We Try Consuming?

• APIs are meant for program-to-program communication

• Normally, to use them, you must write a program!

• A web service testing tool allows testing without writing a program.

• Postman http://www.getpostman.com (REST GUI)

• SoapUI http://www.soapui.com (SOAP/REST GUI)

• CURL https://curl.haxx.se/ (command-line driven)

You wouldn’t use a testing tool in a production scenario, but they’re very
useful for making sure the API works

35

Setting It Up in SoapUI

• Use a REST web service.

• Provide the URL from IBM Cloud for the
Language Translator

Note: This URL is too long to appear on the screen, but the box scrolls left/right to fit it all.

The full URL is
http://gateway.watsonplatform.net/language-translator/api/v3/translate?version=2018-05-01

36

Authorizing SoapUI

Watson requires you to have an account set up on IBM Cloud that is used to run this service.

In SoapUI you can put your login credentials (usually 'apikey' for the userid plus your password) under 'Auth'
at the bottom.

37

Trying It Out in SoapUI

• Use the "method" dropdown to pick
"POST"

• Make sure the media type is
"application/json"

• Type the parameters in JSON format
into the box

• Click the green "Play" button (upper-
left) to run it.

38

Results

• On the right you have tabs to view the result as "Raw", "HTML", "JSON" or "XML

• Watson services use JSON (as do most newer APIs)

• The result is shown in the box.

39

What Might This Look Like from RPG?

For example, the data from this screen can be fed into the code from the last slide.

The output of the last slide can be placed under "To Text".

40

Challenges To Overcome

What problems would we need to solve to do it from RPG?

• Tool to create a JSON (or XML) document

• Some way to do http:// URL from RPG

• Tool to read the returned JSON (or XML)

Other things we might need?

• Ability to specify different methods (GET, POST, PUT, DELETE, etc)

• Somehow specify login credentials

• Transport Layer Security (TLS, often called by the older name “SSL”)

• Sometimes custom HTTP headers are needed

• Encodings sometimes needed (depending on the API)

 XML and JSON, of course

 URL-encoding (aka “web page forms”)

 Multipart documents (aka “attachments”)

 Base64 encoding

41

Free Options Available

Free Options Available for RPG

• Open Source HTTPAPI

• IBM-supplied SQL routines

• IBM-supplied AXIS routines

Other Languages

• Java, PHP, Ruby, Python, Node.js all provide options, here.

Commercial Options

• Various vendors provide tools. (example: Midrange Dynamics MDRest4i)

• I’m not familiar with all of the options available

42

HTTPAPI

Open Source (completely free tool)

• Created by Scott Klement, originally in 2001

• Written in native RPG code

• http://www.scottklement.com/httpapi

Provides Routines For

• HTTP and HTTPS (TLS/SSL) communications

• URL (web form) encoding

• Multipart (attachment) encoding

• Basic, Digest and NTLM2 authentication

Usually Used With Other Open Source Tools

• Expat for reading XML (or use XML-INTO) http://scottklement.com/expat

• YAJL for reading/writing JSON (works with DATA-INTO)

http://scottklement.com/yajl

• BASE64 tool http://scottklement.com/base64

43

http_string syntax

Making HTTP Requests

• http_req = general-purpose HTTP request, lots of options

• http_stmf = simplified HTTP request, where data is read from/written to IFS files

• http_string = simplified HTTP request where data is read/written from/to RPG strings

data-received = http_string(method : url : string-to-send : content-type)

• method = HTTP method (GET, POST, PUT, DELETE, etc)

• url = The URL to communicate with

• string-to-send = RPG char/varchar string to send to URL

• content-type = Internet media type (MIME type) of data you're sending

• data-received = RPG char/varchar string to contain data returned from server

Other Routines

• http_setAuth = set authentication (user/password)

• http_setOption = set various options

• http_error = retrieve error code, message, and http status code

44

Language Translation in RPG

http_setAuth() – sets the userid/password used.

http_string() – sends an HTTP request, getting the input/output from strings

DATA-INTO – RPG opcode for parsing documents such as JSON

request, url and response are standard RPG VARCHAR fields. (CHAR would also work)

http_setAuth(HTTP_AUTH_BASIC: 'apikey': '{your-api-key}');

request = '{"source":"en","target":"es","text":["Hello"]}';

url = 'https://gateway.watsonplatform.net/language-translator/api'
+ '/v3/translate?version=2018-05-01

response = http_string('POST': url: request: 'application/json');

DATA-INTO result %DATA(response) %PARSER('YAJLINTO');

45

XML-INTO Concept

If parameters are passed in XML format, we can interpret it with XML-INTO. This opcode has been a part of RPG
since V5R4.

Try thinking of your XML document as a "representation". Then consider the RPG representation of the same data.

dcl-ds address;
street varchar(30);
city varchar(20);
state char(2) ;
postal varchar(10);

end-ds;

<address>
<street> 123 Main Street </street>
<city> Anywhere </city>
<state> WI </state>
<postal> 12345 </postal>

</address>

That’s what XML-INTO does!

• Maps XML fields into corresponding DS fields

• Field names must match (special characters can be mapped into
underscores if needed)

• Repeating elements can be loaded into arrays, etc.

46

The DATA-INTO Concept

dcl-ds address;
street varchar(30);
city varchar(20);
state char(2) ;
postal varchar(10);

end-ds;

With YAJLINTO

• DATA-INTO can be used on JSON just as XML-INTO is on XML

• Very easy to read JSON documents in RPG

{
"street": "123 Main Street",
"city“: "Anywhere",
"state": "WI",
"postal": "12345"

}

DATA-INTO:

• Like XML-INTO, but requires a 3rd-party "parser"

• Parser determines the format of the data it understands

• Think of it like a printer driver in Windows.

• YAJLINTO is an open source (free) parser for JSON documents.

47

DATA-GEN Concept

dcl-ds address qualified;
name varchar(30) inz('Scott Klement');
street varchar(30) inz('8825 S Howell Ave');
city varchar(20) inz('Oak Creek');
state char(2) inz('WI');
postal varchar(10) inz('53154');

end-ds;

dcl-s Json varchar(1000);

{
"name": "Scott Klement",
"street": "8825 S Howell Ave",
"city": "Oak Creek",
"state": "WI",
"postal": "53154"

}

DATA-GEN address %DATA(Json) %GEN('YAJLDTAGEN');

DATA-GEN:

• DATA-INTO, but in reverse (creates document vs reads document)

• 3rd-party "generator" determines the document type

• YAJLDTAGEN is a free tool for generating JSON

• Remember, { } means "object" -- which is equivalent to an RPG data structure

The preceding DATA-GEN statement
will place a document like the one
above in the variable named Json

48

Generating JSON Input Message With DATA-GEN

dcl-ds reqds qualified;
source varchar(2) inz('en');
target varchar(2) inz('es');
text varchar(1000) dim(1);

end-ds;

reqds.text(1) = 'Hello';

data-gen reqds %data(request) %gen('YAJLDTAGEN');

{
"source": "en",
"target": "es",
"text": ["Hello"]

}

• DCL-DS (start of data structure) generates {

• END-DS (end of data structure) generates }

• DIM generates [and] to indicate array

• Otherwise, fields are generated according to their name/type.

Placed into request
variable

49

Reading JSON Response Message with DATA-INTO

After running this:

• result.translations(1).translation = 'Hola'

• result.word_count = 1

• result.character_count = 5

dcl-ds result qualified;
dcl-ds translations dim(1);

translation varchar(1000);
end-ds;
word_count int(10);
character_count int(10);

end-ds;

data-into result %DATA(response) %PARSER('YAJLINTO');

{
"translations": [{
"translation": "Hola"

}],
"word_count": 1,
"character_count": 5

}

Read from the
response variable

50

HTTPAPI Example (1 of 5)

**free
ctl-opt option(*srcstmt) dftactGrp(*no)

bnddir('HTTPAPI');

/copy httpapi_h

dcl-f WATSONTR6D workstn indds(dspf);

dcl-Ds dspf qualified;
F3Exit ind pos(3);

end-Ds;

dcl-c UPPER 'ENESFRITPT';
dcl-c lower 'enesfritpt';

fromLang = 'en';
toLang = 'es';

To put all of these concepts together, here's the full RPG code for the translate
example using HTTPAPI and DATA-GEN

BNDDIR is used to bind
your program to the tools

Copybooks contain the
definitions we'll need to

call the HTTPAPI routines

51

HTTPAPI Example (2 of 5)

dou dspf.F3Exit = *on;

exfmt screen1;
if dspf.F3exit = *on;

leave;
endif;

fromLang = %xlate(UPPER:lower:fromLang);
toLang = %xlate(UPPER:lower:toLang);
toText = translate(fromLang: toLang: %trim(fromText));

enddo;

*inlr = *on;
return;

Main loop controls the flow of the program, repeating the screen until F3 key is
pressed.

the translate
procedure is what

actually calls
Watson

52

HTTPAPI Example (3 of 5)

dcl-proc translate;

dcl-pi *n varchar(1000);
fromLang char(2) const;
tolang char(2) const;
fromText varchar(1000) const;

end-pi;

dcl-s url varchar(2000);
dcl-s request varchar(2000);
dcl-s response varchar(5000);
dcl-s httpstatus int(10);

dcl-ds result qualified; // {
dcl-ds translations dim(1); // "translations": [{

translation varchar(1000); // "translation": "{string}"
end-ds; // },
word_count int(10); // "word_count": {number},
character_count int(10); // "character_count": {number}

end-ds; // }

Data structure must
match the JSON

format for the output
parameters.

Most of this slide is
just ordinary RPG

definitions

53

HTTPAPI Example (4 of 5)

dcl-ds reqds qualified; // {
source varchar(2); // "source": "{string}",
target varchar(2); // "target": "{string}",
text varchar(1000) dim(1); // "text": ["{string}"]

end-ds; // }

// Generate the JSON document to send

reqds.source = fromLang;
reqds.target = toLang;
reqds.text(1) = fromText;

data-gen reqds %data(request) %gen('YAJLDTAGEN');

This RPG data structure matches
the format of the JSON that is to be

sent to Watson

Populate the data structure with
languages and text passed into this

subprocedure.

Generate the JSON into a variable
named 'request'

54

HTTPAPI Example (5 of 5)

http_debug(*on: '/tmp/watson-diagnostic-log.txt');

http_setAuth(HTTP_AUTH_BASIC
: 'apikey'
: 'your-Watson-api-key-goes-here');

url = 'https://gateway.watsonplatform.net/language-translator/api'
+ '/v3/translate?version=2018-05-01';

monitor;
response = http_string('POST': url: request: 'application/json');

on-error;
httpcode = http_error();

endmon;

DATA-INTO result %DATA(response) %PARSER('YAJLINTO');

return result.translations(1).translation;

end-proc;

Send 'request' (input) and
get back 'response' (output)

Load output into 'result'
using data-into

Return the first string
translation back to mainline

of program

Enable a diagnostic ("trace")
of HTTP session.

Set User/Password

55

Error Handling with HTTPAPI

response = http_string('POST': url: request: 'application/json');

http_string throws an exception if there's an error. If you don't mind the user receiving an exception

when something goes wrong, you can code as follows (and let the OS handle it.)

To handle it yourself, use RPG's monitor/on-error opcodes.

monitor;
response = http_string('POST': url: request: 'application/json');

on-error;
errorMsg = http_error();

endmon;

http_error() returns the last error message. You can also use it to get the last error number and HTTP

status code by passing optional parameters.

dcl-s msg varchar(100);
dcl-s errnum int(10);
dcl-s status int(10);

msg = http_error(errnum : status);

56

SQL QSYS2 HTTP Functions

Included in IBM's QSYS2 schema (library)

• Added in September 2021 (7.3 TR11, 7.4 TR5, 7.5 at GA)

• Updated in subsequent TRs and group PTFs

• The best part? Nothing to install!

• The next best? Easy to use!

Unlike SYSTOOLS, Doesn't Use Java!!

• Therefore HTTP_POST is much faster than HTTPPOSTCLOB (same for other similar

operations, HTTP_GET, HTTP_PUT, HTTP_DELETE run better than HTTPxxxCLOB

versions.)

• Need a "real" CCSID. Your job should not be 65535. This is because data is

sent/received in Unicode

Provides:

• HTTP routines

• Routines for reading/writing XML/JSON

• URLENCODE and BASE64 routines

57

SQL Functions Available

HTTP Routines

• HTTP_GET(), HTTP_POST, HTTP_PUT(), HTTP_DELETE(), HTTP_PATCH()

• HTTP_GET_VERBOSE(), HTTP_POST_VERBOSE(), HTTP_PUT _VERBOSE(),

HTTP_DELETE_VERBOSE(), HTTP_PATCH_VERBOSE()

JSON/XML Routines

• JSON_TABLE

• JSON_OBJECT, JSON_ARRAY, et al

• XMLTABLE

• BASE64ENCODE or BASE64DECODE

• URLENCODE or URLDECODE

https://www.ibm.com/docs/en/i/7.5?topic=programming-http-functions-overview

58

Same Example with SQL

Included in IBM's QSYS2 schema (library)

• No need to rewrite whole program

• Just re-write the translate() subprocedure.

We need to

• Create a JSON object (JSON_OBJECT function) as a character string

• Send the character string via HTTP POST method (HTTP_POST)

• Receive the response as a character string

• Interpret the received JSON string (JSON_TABLE)

NOTE:

• Its not required that we use the SQL JSON together with the SQL HTTP routines

• We could use YAJL for JSON and SQL for HTTP

• Or SQL for JSON and HTTPAPI for HTTP

• etc.

59

HTTP_POST Syntax

HTTP_POST is an SQL function (UDF) you can call from within another SQL

statement. (Typically a VALUES or SELECT statement.)

HTTP_POST(url, requestMessage, options)

• url = an expression containing the URL to connect to

• requestMessage = an expression containing the message to send

• options = a string expression (formatted as JSON) containing options that control

the request.

Returns: A CLOB(2g) CCSID 1208 containing the response from the server

Note: All of the above are UTF-8 (CCSID 1208). SQL will automatically perform

conversions, so be sure your job CCSID is set properly.

For example, the EBCDIC typically used in the USA is CCSID 37. If your QCCSID system

value isn't set properly, you can override it temporarily in the job like this:

CHGJOB CCSID(37)

60

SQL HTTP Options

{
"basicAuth": "MyUserId,MyPassword",
"connectTimeout": 180,
"header": "Content-type,application/json; charset=UTF-8",
"header": "Accept,application/json,*",
"redirect": 5

}

Options are

• Formatted as JSON

• If an option has multiple parameters, they are separated with commas

"option-name": "option parameter 1,option parameter 2"

Some options are:

• basicAuth = userid/password needed to log in with basic authentication

• connectTimeout = seconds to wait for connection before timing out

• redirect = number of times to follow a redirect before failing

• header = HTTP header to include (may be specified multiple times)

All options are documented here:

https://www.ibm.com/docs/en/i/7.4?topic=functions-http-get#rbafzscahttpget__HTTP_options

61

Simple HTTP_POST Example:

request = '{ "test": "json" }';

url = 'https://gateway.watsonplatform.net/language-translator/api'
+ '/v3/translate?version=2018-05-01';

options = '{ "basicAuth": "apikey,my-password-here", +
"header": "content-type,application/json" }';

exec SQL
values QSYS2.HTTP_POST(:url, :request, :options)
into :response;

This will

• Connect to the given URL

• Log in as userid=apikey, password=my-password-here

• Tell the server at the URL to expect data in application/json format

• Send the (mocked up example) JSON

• Receive the response into the "response" variable

62

SQL JSON Publishing (1 of 2)

Create a JSON object:

JSON_OBJECT(KEY 'name' VALUE 'val', KEY 'name2' VALUE 'val2')

JSON_OBJECT('name' VALUE 'val', 'name2' VALUE 'val2')

JSON_OBJECT('name': 'val', 'name2': 'val2')

Result:

{ "name": "val", "name2": "val2" }

• The three syntaxes all do the same thing. (The word KEY is optional, and the word

VALUE can be replaced with a colon.)

• Instead of a character string, the value can be a number, another json object, or a

json array.

• Remember: These are SQL functions, used within an SQL statement.

63

SQL JSON Publishing (2 of 2)

Create a JSON array:

JSON_ARRAY('val1', 'val2', etc)

JSON_ARRAY(full-select)

Result:

["val1", "val2", "val3"]

• Instead of a character string, the values can be numbers or other json object/arrays

• The full-select is an SQL select statement. It must return only a single column.

• If one full-select is given, it may return multiple rows. Each row becomes its own

array entry.

• It's possible to list multiple select statements or combine them with values. In that

case, the select statement must return only one row.

64

SQL Reading JSON

JSON_TABLE is an SQL table function (UDTF)

This is mean to read a JSON document and treat the output as an SQL table, allowing

you to query it, use it in a program, etc.

JSON_TABLE(json-document, path COLUMNS(column-definitions))

• json-document = the json document as a char, varchar, clob, etc

• path = path within the JSON document to be read

• column-definitions = defines each column and how to retrieve it

65

SQL HTTP Example (1 of 4)

dcl-proc translate;

dcl-pi *n varchar(1000);
fromLang char(2) const;
tolang char(2) const;
fromText varchar(1000) const;

end-pi;

dcl-s userid varchar(10);
dcl-s password varchar(200);
dcl-s url varchar(2000);
dcl-s request varchar(2000);
dcl-s response varchar(5000);
dcl-s retval varchar(1000);
dcl-s options varchar(1000);

Just some definitions,
here…

66

SQL HTTP Example (2 of 4)

exec sql values json_object(
'source' value lower(:fromLang),
'target' value lower(:toLang),
'text' value json_array(:fromText)

)
into :request;

if %subst(sqlstt:1:2) <> '00' and %subst(sqlstt:1:2) <> '01';
// Handle error

endif;

userid = 'apikey';
password = 'password';

exec sql values json_object(
'basicAuth' value :userid || ',' || :password,
'header' value 'Content-Type,application/json'

)
into :options;

if %subst(sqlstt:1:2) <> '00' and %subst(sqlstt:1:2) <> '01';
// Handle error

endif;

{

"source": "en",

"target": "es",

"text": ["Hello"]

}

{

"basicAuth": "apikey,password",

"header": "Content-type,application/json"

}

67

SQL HTTP Example (3 of 4)

url = 'https://+
api.us-south.language-translator.watson.cloud.ibm.com+
/instances/66f38a33-6f74-492a-8025-8a2e1759a228+
/v3/translate?version=2018-05-01';

exec SQL
values QSYS2.HTTP_POST(:url, :request, :options)
into :response;

if %subst(sqlstt:1:2) <> '00' and %subst(sqlstt:1:2) <> '01';
retval = '**ERROR IN HTTP_POST: SQLSTT=' + sqlstt;
return retval;

endif;

This will

• Connect/Login with the options from the previous slide

• Send the JSON document created on the previous slide

• Return the output from the server into "response"

68

SQL HTTP Example (4 of 4)

exec SQL SELECT J."translation"
into :retval
from JSON_TABLE(:response, 'lax $'

COLUMNS(
"translation" VARCHAR(1000)
PATH 'lax $.translations[0].translation'

)
) as J;

if %subst(sqlstt:1:2) <> '00' and %subst(sqlstt:1:2) <> '01';
retval = '** ERROR READING JSON: SQLSTT=' + sqlstt;
return retval;

endif;

return retval; // Will contain: Hola

end-proc;

{
"translations": [{

"translation": "Hola"

}],
"word_count": 1,

"character_count": 5

}

69

Alternately, Combine All SQL Into One Statement

exec SQL SELECT J."translation"
into :retval
from JSON_TABLE(

HTTP_POST(
:url,
json_object(

'source' value lower(:fromLang),
'target' value lower(:toLang),
'text' value json_array(:fromText)

),
json_object(

'basicAuth' value :userid || ',' || :password,
'header' value 'Content-Type,application/json'

)
),
'lax $' COLUMNS(

"translation" VARCHAR(1000)
PATH 'lax $.translations[0].translation'

)
) as J;

if %subst(sqlstt:1:2) <> '00' and %subst(sqlstt:1:2) <> '01';
retval = '** ERROR CALLING API: SQLSTT=' + sqlstt;
return retval;

endif;

70

Db2 SYSTOOLS (OLDER SQL)

Included in IBM's SYSTOOLS schema (library)

• First added in 2014, just after IBM i 7.2 release.

• Updated several times in Technology Refreshes for 7.1+

• The best part? Nothing to install!

• The next best? Easy to use!

Uses Java Under the Covers

• You must have a JVM (1.6 or newer) installed

• Starts the JVM in each job (performance considerations)

• Need a "real" CCSID. Your job should not be 65535.

Provides:

• HTTP routines

• Routines for reading/writing XML/JSON

• URLENCODE and BASE64 routines

71

SQL Functions in SYSTOOLS

HTTP Routines

• HTTPxxxBLOB or HTTPxxxCLOB functions (xxx can be GET, POST, PUT or DELETE)

• HTTPBLOB or HTTPCLOB functions

• HTTPxxxBLOBVERBOSE or HTTPxxxCLOBVERBOSE table functions

• HTTPHEAD

JSON/XML Routines

• JSON_TABLE

• JSON_OBJECT, JSON_ARRAY, et al

• XMLTABLE

• BASE64ENCODE or BASE64DECODE

• URLENCODE or URLDECODE

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_74/rzajq/rzajqudfhttpclob.htm

72

Same Example with SYSTOOLS

Included in IBM's SYSTOOLS schema (library)

• No need to rewrite whole program

• Just re-write the translate() subprocedure.

We need to

• Create a JSON object (JSON_OBJECT function) as a character string

• Send the character string via HTTP POST method (HTTPPOSTCLOB)

• Receive the response as a character string

• Interpret the received JSON string (JSON_TABLE)

NOTE:

• Its not required that we use the SQL JSON together with the SQL HTTP routines

• We could use YAJL for JSON and SQL for HTTP

• Or SQL for JSON and HTTPAPI for HTTP

• etc.

73

HTTPPOSTCLOB Syntax

HTTPPOSTCLOB is an SQL function (UDF) you can call from within another SQL

statement. (Typically a SELECT statement.)

HTTPPOSTCLOB(url, headersXML, requestMessage)

• url = a varchar(2048) containing the URL to connect to

• headersXML = a CLOB(10k) containing an XML document that specifies any custom

HTTP headers. (Can be null if you don't wish to customize the headers)

• requestMessage = a CLOB(2G) containing the message to send

Returns: A CLOB(2g) containing the response from the server

Note: All of the above are UTF-8 (CCSID 1208). SQL will automatically perform

conversions, so be sure your job CCSID is set properly.

For example, the EBCDIC typically used in the USA is CCSID 37. If your QCCSID system

value isn't set properly, you can override it temporarily in the job like this:

CHGJOB CCSID(37)

74

SQL JSON Publishing (1 of 2)

Create a JSON object:

JSON_OBJECT(KEY 'name' VALUE 'val', KEY 'name2' VALUE 'val2')

JSON_OBJECT('name' VALUE 'val', 'name2' VALUE 'val2')

JSON_OBJECT('name': 'val', 'name2': 'val2')

Result:

{ "name": "val", "name2": "val2" }

• The three syntaxes all do the same thing. (The word KEY is optional, and the word VALUE can be replaced

with a colon.)

• Instead of a character string, the value can be a number, another json object, or a json array.

• Remember: These are SQL functions, used within an SQL statement.

75

SQL JSON Publishing (2 of 2)

Create a JSON array:

JSON_ARRAY('val1', 'val2', etc)

JSON_ARRAY(full-select)

Result:

["val1", "val2", "val3"]

• Instead of a character string, the values can be numbers or other json object/arrays

• The full-select is an SQL select statement. It must return only a single column.

• If one full-select is given, it may return multiple rows. Each row becomes its own array entry.

• It's possible to list multiple select statements or combine them with values. In that case, the select

statement must return only one row.

76

SQL Reading JSON

JSON_TABLE is an SQL table function (UDTF)

This is mean to read a JSON document and treat the output as an SQL table, allowing you to query it, use it in

a program, etc.

JSON_TABLE(json-document, path COLUMNS(column-definitions))

• json-document = the json document as a char, varchar, clob, etc

• path = path within the JSON document to be read

• column-definitions = defines each column and how to retrieve it

77

Db2 SQL Example (1 of 4)

dcl-proc translate;

dcl-pi *n varchar(1000);
fromLang char(2) const;
tolang char(2) const;
fromText varchar(1000) const;

end-pi;

dcl-s userid varchar(10);
dcl-s password varchar(200);
dcl-s hdr varchar(200);
dcl-s url varchar(2000);
dcl-s request varchar(2000);
dcl-s response varchar(5000);
dcl-s retval varchar(1000);

Most of this slide is
just ordinary RPG

definitions

78

Db2 SQL Example (2 of 4)

exec sql select json_object(
'source' value :fromLang,
'target' value :toLang,
'text' value json_array(:fromText)

)
into :request
from SYSIBM.SYSDUMMY1;

if %subst(sqlstt:1:2) <> '00' and %subst(sqlstt:1:2) <> '01';
retval = '**ERROR CREATING: SQLSTT=' + sqlstt;
return retval;

endif;

{
"source": "en",

"target": "es",

"text": ["Hello"]

}

json_object(
'source' value 'en',
'target' value 'es',
'text' value json_array('Hello')

)

Error checking is
done the same as

any other SQL
statement.

79

Db2 SQL Example (3 of 4)

userid = 'apikey';
password = 'your-Watson-api-key-goes-here';

url = 'https://' + userid + ':' + password + '@'
+ 'gateway.watsonplatform.net/language-translator/api'
+ '/v3/translate?version=2018-05-01';

hdr = '<httpHeader>+
<header name="Content-Type" value="application/json" />+
</httpHeader>';

exec SQL
select SYSTOOLS.HTTPPOSTCLOB(:url, :hdr, :request)

into :response
from SYSIBM.SYSDUMMY1;

if %subst(sqlstt:1:2) <> '00' and %subst(sqlstt:1:2) <> '01';
retval = '**ERROR IN HTTP: SQLSTT=' + sqlstt;
return retval;

endif;

Error checking is done the
same as any other SQL

statement.

The easiest way to do
user/password is add

them to the URL

The SYSTOOLS http
functions only support
Basic authentication

It is a challenge to get the HTTP status code with
HTTPPOSTCLOB

80

Db2 SQL Example (4 of 4)

exec SQL SELECT J."translation"
into :retval
from JSON_TABLE(:response, 'lax $'

COLUMNS(
"translation" VARCHAR(1000)

PATH 'lax $.translations[0].translation'
)

) as J;

if %subst(sqlstt:1:2) <> '00' and %subst(sqlstt:1:2) <> '01';
retval = '** ERROR READING: SQLSTT=' + sqlstt;
return retval;

endif;

return retval;

end-proc;

JSON_TABLE is a
syntax for mapping

JSON into a virtual table.

Once it is viewed as a
table, you can SELECT

INTO to get it into an
RPG variable

{
"translations": [{
"translation": "Hola"

}],
"word_count": 1,
"character_count": 5

}

81

Error Handling with Db2 SQL

Since the HTTP, JSON, XML, etc functions in Db2 are simply SQL statements, you can tell if something failed by

checking SQLSTATE (SQLSTT) or SQLCODE (SQLCOD) the same as you would a regular SQL statement.

exec SQL (any SQL statement here);

if %subst(sqlstt:1:2) <> '00' and %subst(sqlstt:1:2) <> '01';
retval = '** SQL ERROR: SQLSTT=' + sqlstt;
return retval;

endif;

However, this does not provide a lot of detail about the problem.

Calling the VERBOSE table functions (example: HTTPPOSTCLOBVERBOSE) does provide a little more information

but does not provide in-depth diagnostics.

For example, if you provide an invalid URL, you simply get back a null.

But if you connect to a valid host and it returns "404 Not Found" you can get that message from the VERBOSE

function.

82

Db2 SQL HTTP Functions

Links to details for the various SQL functions in the IBM Knowledge Center

Don't forget, these won't work if you have sysval QCCSID = 65535 unless you set the CCSID in
your job!

JSON_ARRAY
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_74/db2/rbafzscajsonarray.htm

SQL HTTP routines:
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_74/rzajq/rzajqhttpoverview.htm

chgjob ccsid(37)

JSON_TABLE
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_74/db2/rbafzscajsontable.htm

JSON_OBJECT
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_74/db2/rbafzscajsonobject.htm

83

AXIS Transport API

IBM-supplied

• Comes with the IBM HTTP server, so no need for third-party software

• Runs behind the old wsdl2ws.sh/wsdl2rpg.sh SOAP code

• Designed for C, but IBM provides RPG prototypes

• Shipped with the IWS client code starting in 2008

IBM-supplied Examples With RPG
• https://developer.ibm.com/articles/i-send-receive-user-defined-soap-rest-messages-trs/
• https://www-01.ibm.com/support/docview.wss?uid=nas8N1022250

Documentation

• https://www.ibm.com/systems/power/software/i/iws/

• Under “Documentation”, click “Web Services Client for ILE Programming Guide”

• Most of this PDF is aimed at SOAP with IBM’s generator.

• Needed Transport APIs are in Chapter 17, under “Transport C APIs”

84

AXIS Routines We Can Call

AXIS Routines

• axiscTransportCreate = Create a handle for an HTTP connection

• axiscTransportDestroy = Destroy connection handle

• axiscSetProperty = Set properties for use in HTTP handle

• axiscGetProperty = Get properties from an HTTP handle

• axiscTransportSend = Connect with HTTP and send data.

• axiscTransportFlush = Data sent is buffered and may not be completely sent until the buffer is flushed (by calling

this API)

• axiscTransportReceive = Receive results from HTTP. This may return only part of the data; call it repeatedly to get

everything.

• axiscGetLastErrorCode = Retrieve the last error number that occurred

• axiscGetLastError = Retrieve the last error message that occurred

• axiscAxisStartTrace = Create detailed trace of HTTP connection to IFS file

NOTE: The AXIS Transport API does not provide any routines for handling XML, JSON, URL-encoding, Base64 encoding,

etc. You would need to use routines from elsewhere.

85

AXIS Procedure

To use the AXIS routines, the following is needed:

1. Create a handle.

2. Set properties for:

• HTTP method (GET, POST, PUT, DELETE)

• Login credentials (Basic Authentication)

• Content-Type HTTP Header

• TLS/SSL options

3. Send data, then flush send buffer

4. Receive data in a loop until there's no more to receive

5. Get the property for the HTTP status code

6. Destroy handle

7. If any of the above returns an error, call the routines to get error number/message.

86

Same Example with AXIS

To Use AXIS C for HTTP

• No need to rewrite whole program

• Just re-write the translate() subprocedure.

• Except: We need to include the AXIS copybook and bind to the QAXIS10CC service program.

ctl-opt option(*srcstmt) dftactGrp(*no)
bnddir('AXIS': 'YAJL');

/copy yajl_h
/copy /QIBM/ProdData/OS/WebServices/V1/client/include/Axis.rpgleinc

CRTBNDDIR BNDDIR(your-lib/AXIS)

ADDBNDDIRE BNDDIR(your-lib/AXIS) OBJ((QSYSDIR/QAXIS10CC *SRVPGM))

Since AXIS doesn't provide routines to work with JSON documents, we will:

• Use SQL to create the JSON

• Use YAJL with DATA-INTO to read the JSON

87

AXIS Example (1 of 9)

dcl-proc translate;

dcl-pi *n varchar(1000);
fromLang char(2) const;
tolang char(2) const;
fromText varchar(1000) const;

end-pi;

dcl-s userid varchar(10);
dcl-s password varchar(200);
dcl-s hdr varchar(200);
dcl-s url varchar(2000);
dcl-s request varchar(2000);
dcl-s response varchar(5000);
dcl-s rcvBuf char(5000);
dcl-s rc int(10);
dcl-s propName char(200);
dcl-s propVal char(200);
dcl-s transportHandle pointer;

dcl-ds result qualified;
dcl-ds translations dim(1);

translation varchar(1000) inz('');
end-ds;
word_count int(10) inz(0);
character_count int(10) inz(0);

end-ds;

Most of this slide is
just ordinary RPG

definitions

Data structure must match
the JSON format for the

output parameters. (Same
as earlier examples.)

88

AXIS Example (2 of 9)

exec sql select json_object(
'source' value :fromLang,
'target' value :toLang,
'text' value json_array(:fromText)

)
into :request
from SYSIBM.SYSDUMMY1;

if %subst(sqlstt:1:2) <> '00' and %subst(sqlstt:1:2) <> '01';
return '**ERROR CREATING: SQLSTT=' + sqlstt;

endif;

Using SQL To Create
JSON Document

(same as previous
example)

89

AXIS Example (3 of 9)

axiscAxisStartTrace('/tmp/axistransport.log': *NULL);

userid = 'apikey';
password = 'your-Watson-api-key-here';

url = 'https://gateway.watsonplatform.net/language-translator/api'
+ '/v3/translate?version=2018-05-01';

transportHandle = axiscTransportCreate(url: AXISC_PROTOCOL_HTTP11);
if (transportHandle = *null);
failWithError(transportHandle: 'axiscTransportCreate');

endif;

Create detailed diagnostic
("trace") log of HTTP

session

Set up transport to use the
Watson URL and the HTTP

1.1 protocol. (This is the
only supported protocol.)

90

AXIS Example (4 of 9)

propName = 'POST' + x'00';
axiscTransportSetProperty(transportHandle

: AXISC_PROPERTY_HTTP_METHOD
: %addr(propName));

propName = userid + x'00';
propVal = password + x'00';
axiscTransportSetProperty(transportHandle

: AXISC_PROPERTY_HTTP_BASICAUTH
: %addr(propName)
: %addr(propVal));

propName = 'Content-Type' + x'00';
propVal = 'application/json' + x'00';
axiscTransportSetProperty(transportHandle

: AXISC_PROPERTY_HTTP_HEADER
: %addr(propName)
: %addr(propVal));

propName = '*SYSTEM' + x'00';
propVal = x'00';
axiscTransportSetProperty(transportHandle

: AXISC_PROPERTY_HTTP_SSL
: %addr(propName)
: %addr(propVal));

Use the POST method

Set user/password
using basic auth

Set the content-type
HTTP header

Tell AXIS to use default
TLS/SSL settings from

the *SYSTEM certificate
store

91

AXIS Example (5 of 9)

rc = axiscTransportSend(transportHandle
: %addr(request: *data)
: %len(request)
: 0);

if rc = -1;
failWithError(transportHandle: 'axiscTransportSend');

endif;

rc = axiscTransportFlush(transportHandle);
if rc = -1;

failWithError(transportHandle: 'axiscTransportFlush');
endif;

The network connection
begins running here

The %ADDR and %LEN logic
converts the 'request' variable

into pointers for AXIS

Since data is buffered, it
isn't fully sent until the

buffer is flushed.

92

AXIS Example (6 of 9)

response = '';

dou rc < 1;

rc = axiscTransportReceive(transportHandle
: %addr(rcvBuf)
: %size(rcvBuf)
: 0);

if rc >= 1;
response += %subst(rcvBuf:1:rc);

endif;

enddo;

if rc = -1;
failWithError(transportHandle: 'axiscTransportReceive');

else;
httpCode = getHttpStatus(transportHandle);

endif;

axiscTransportDestroy(transportHandle);

Data will not be received
all at once. Keep calling
the receive routine until
there's no more data.

After each call, add any
new data to the end of the

response string

axiscTransportDestroy
cleans up the transport

when you're done

93

AXIS Example (7 of 9)

if %len(response) > 0;
data-into result %DATA(response) %PARSER('YAJLINTO');

endif;

return result.translations(1).translation;

end-Proc;

With data received, we can use DATA-
INTO to interpret the JSON, just as the

HTTPAPI example did.

(SQL's JSON_TABLE would've also
worked.)

Its worth considering that you can mix/match the different tools:

• HTTPAPI, SQL and AXIS all send a character string

o It doesn't matter if that string was built with SQL or DATA-GEN

• JSON_TABLE / XMLTABLE interpret a character string

o It does not matter if that character string was received with HTTPAPI,

SQL or AXIS

o Or even if the string was read from a screen, file, etc.

• Same with DATA-GEN, DATA-INTO, JSON_OBJECT, XMLDOCUMENT, etc.

If you prefer DATA-GEN/DATA-INTO, use them -- even if you use SQL for HTTP

If you prefer HTTPAPI, use it -- even if you prefer SQL for JSON/XML

94

AXIS Example (8 of 9)

dcl-proc getHttpStatus;

dcl-pi *n varchar(10);
transportHandle pointer value;

end-pi;

dcl-s result varchar(10) inz('');
dcl-s statusCode pointer;

if transportHandle <> *null;
axiscTransportGetProperty(transportHandle

: AXISC_PROPERTY_HTTP_STATUS_CODE
: %addr(statusCode));

endif;

if statusCode <> *null;
result = %str(statusCode);

endif;

return result;
end-proc;

axiscTransportGetProperty can be used to
get the HTTP status code

200=OK
403=Forbidden
404=Not Found
500=Server-Side Error

95

AXIS Example (9 of 9)

lastCode = axiscTransportGetLastErrorCode(transportHandle);
lastMsg = %str(axiscTransportGetLastError(transportHandle));

if lastCode = EXC_TRANSPORT_HTTP_EXCEPTION;
statusCode = getHttpStatus(transportHandle);

endif;

To save time/space I won't show you the entire error checking routine, just the important parts.

This gets the error number and message.

If the message indicates an HTTP error, it also gets the HTTP status code.

96

Feature Comparison

AXISSQLHTTPAPIFeature

Easy to code

newPerforms Well

Shipped with IBM i Operating System

Basic (plain text) Authentication

NTLM2 (encrypted) Authentication

Retrieve HTTP Status Code

Retrieve Document When Status=Error

Detailed Diagnostic Log

URL/Forms Encoding Function

Multipart/Attachment Encoding Function

Supports Uncommon HTTP Methods

Set Arbitrary HTTP Headers

Supports HTTP Cookies

Legend

Fully Supported

VERBOSE functions only

Not Available

Conclusions:
• Very few RPGers use AXIS

because the coding is

complex and hard to

maintain

• If you can install a 3rd-party,

open-source tool, HTTPAPI

offers the most features

• Otherwise, SQL can be a

good choice

97

Customer Maintenance Example

• The Watson example was REST-like, but not truly REST.
o URI did not indicate the resource

o POST was used for an idempotent operation

• The best way to fully-demonstrate rest is with a CRUD API
o Not so easy to find for free on the Internet!

o Using my own (from the providing section) as an example.

• Customer maintenance example
o Allows either XML or JSON

o URI identifies a customer record (the resource we're working with)

• GET = retrieve one or all customers (depending on if URI contains the number)

• PUT = update a customer

• POST = create a customer

• DELETE = delete a customer

http://my-server/api/customers/1234

98

Customer Maintenance – Start Screen

The customer maintenance program starts by letting the user select a customer.

Remember: The REST architecture
calls for a layered system.

We will not be accessing the
database directly -- but instead,
calling an API!

Adds scalability -- can have multiple
jobs/servers handling APIs

Adds reusability. APIs can be called
from anywhere.

• Other applications

• Web page

• Mobile apps

• etc.

99

Expected Messages (JSON)

{

"success": true,

"errorMsg": "",

"data": {

"custno": 495,

"name": "Acme Foods",

"address": {

"street": "123 Main Street",

"city": "Boca Raton",

"state": "FL",

"postal": "43064-2121"

}

}

}

The messages passed between the consumer and provider provide a representation of
a customer -- or a list of customers. (With a spot for error information also included)

{

"success": true,

"errorMsg": "",

"data": [

{

"custno": 495,

"name": "Acme Foods",

"address": {

"street": "123 Main Street",

"city": "Boca Raton",

"state": "FL",

"postal": "43064-2121"

}

},

{ … another customer here … },
{ … another customer here … }

]

}

100

Expected Messages (XML)

<cust success="true" errorMsg="">
<data custno="495">

<name>Acme Foods</name>
<address>

<street>123 Main Street</street>
<city>Boca Raton</city>
<state>FL</state>
<postal>43064-2121</postal>

</address>
</data>

</cust>

This API supports both XML and JSON documents. When an XML representation of the resource is requested, the
message will look like this:

<cust success="true" errorMsg="">
<data custno="495">

<name>Acme Foods</name>
<address>

<street>123 Main Street</street>
<city>Boca Raton</city>
<state>FL</state>
<postal>43064-2121</postal>

</address>
</data>
<data>... another customer ...</data>
<data>... another customer ...</data>

</cust>

101

Specifying Media Types

Since this API supports both XML and JSON, you need to tell it which format you wish to use. There is a standard
for specifying document types used in HTTP (as well as other Internet media, such as E-mail) called media types.

(Often known by the older name "MIME type")

Here are some examples: MeaningMedia type

(MIME type)

JSON documentapplication/json

XML documenttext/xml

Alternative way to specify XML documentapplication/xml

Portable Network Graphic (.png) imagesimage/png

JPEG (.jpg) imagesimage/jpeg

Plain text (.txt) filetext/plain

Comma Separated Values (.csv) filetext/csv

102

Standard HTTP Headers for Media Types

The HTTP protocol provides a place to specify media types in two different scenarios:

• content-type = When sending data you use this to tell the API what type of document you are sending

• accept = Tells the API what type(s) of response document you're willing to accept

GET http://ibmi.example.com/api/customers
Accept: text/xml

For example, to get a list of customers in XML representation:

GET http://ibmi.example.com/api/customers/500
Accept: application/json

To get customer 500 in JSON representation:

POST http://ibmi.example.com/api/customers/500
Accept: text/xml
Content-type: application/json

...data in JSON with representation of new

customer follows...

To create a new customer by sending data in JSON
format, but get back a response in XML format:

The method of specifying the content-type and accept headers will vary depending on the HTTP tool you
use. I will demonstrate how to do it with HTTPAPI.

103

Time Savers For Next Example

For the Watson Language Translation API, I demonstrated how to use three
different HTTP tools:

• HTTPAPI

• Db2 SYSTOOLS functions (HTTPGETCLOB, et al)

• AXIS C

I hope you found that interesting!

However, to save time on the Customer Maintenance example, I will:

• only show HTTPAPI

• only show key "snippets" of the code
o not showing read/write screen, database, etc.

• provide full code for download from
http://www.scottklement.com/presentations/

104

Retrieving All Customers As JSON

dcl-s jsonData varchar(100000);
dcl-c BASEURL 'http://localhost:8500/api/customers';

UserId = 'sklement';
Password = 'bigboy';

http_setAuth(HTTP_AUTH_BASIC: UserId: Password);

monitor;
jsonData = http_string('GET' : BASEURL);
msg = *blanks;

on-error;
msg = http_error();

endmon;

data-into cust %DATA(jsonData
: 'case=convert countprefix=num_')

%PARSER('YAJLINTO');

This API defaults its output to JSON, so its not necessary to specify the
accept header for JSON data.

105

XML-INTO or DATA-INTO Options

data-into cust %DATA(jsonData
: 'case=convert countprefix=num_')

%PARSER('YAJLINTO');

case=convert

• upper/lower case in variable names do not need to match

• accented characters are converted to closest un-accented equivalent

• spaces or punctuation symbols are converted to underscores

countprefix=num_

• RPG will calculate a count of the JSON (or XML) elements
o num_ is the prefix to use

o fields with the prefix is where the counts are placed

• to get a count of "data" elements, add a "num_data" field
o begins with the prefix, ends with the name of the element to count

dcl-ds cust qualified;
...
num_data int(10);
dcl-ds data dim(999);

custno packed(5: 0);
name varchar(30);
...

end-ds;
end-ds;

106

Interpreting the JSON

dcl-ds cust qualified; // {
success ind inz(*on); // "success": true|false,
errorMsg varchar(500) inz(''); // "errorMsg": "{string}",
num_data int(10) inz(0);
dcl-ds data dim(999); // "data": [{

custno packed(5: 0) inz(0); // "custno": {number},
name varchar(30) inz(''); // "name": "{string}",
dcl-ds address; // "address": {

street varchar(30) inz(''); // "street": "{string}",
city varchar(20) inz(''); // "city": "{string}",
state char(2) inz(' '); // "state": "{string}",
postal varchar(10) inz(''); // "postal": "{string}"

end-ds; // }
end-ds; // }]

end-ds; // }

data-into cust %DATA(jsonData
: 'case=convert countprefix=num_')

%PARSER('YAJLINTO');

// Now we can load our subfile from the data in 'cust'!

107

Updating a Customer (JSON)

Generating a JSON document is similar to reading it, except DATA-GEN is used instead
of DATA-INTO.

dcl-s jsonData varchar(10000);

data-gen cust %data(jsonData: 'countprefix=num_')
%gen('YAJLDTAGEN');

monitor;
url = BASEURL + '/' + %char(custno);
http_string('PUT': url: jsonData : 'application/json');

on-error;
msg = http_error();
return *off;

endmon;

108

Omitting Fields When Updating

If you wanted to create a "deluxe" version of this
program, you could code it so that it only sends the
specific fields to be updated.

You can omit fields from the document created by DATA-
GEN by using countprefix fields. For example, if you add
a num_name field to the data structure, and set it to 0, no
name element is added to the JSON document.

Advantages:

• Makes the JSON smaller, so quicker to send

• Avoids "phantom refreshes" if two people are
updating the document at the same time

Disadvantages:

• The message doesn't contain a "complete"
representation of the customer resource.

dcl-ds cust qualified;
...
dcl-ds data dim(999);

...
num_name int(10);
name varchar(30);
...

end-ds;
end-ds;

cust.data.num_name = 0;

if orig.name <> name;
cust.data.num_name = 1;
cust.data.name = %trim(name);

endif;

109

Retrieving All Customers As XML (1 of 2)

dcl-s xmlData varchar(100000);
dcl-c BASEURL 'http://localhost:8500/api/customers';
http_xproc(HTTP_POINT_ADDL_HEADER: %paddr(add_accept_header));

UserId = 'sklement';
Password = 'bigboy';

http_setAuth(HTTP_AUTH_BASIC: UserId: Password);

monitor;
xmlData = http_string('GET' : BASEURL);
msg = *blanks;

on-error;
msg = http_error();

endmon;

To retrieve the whole list of customers as XML, we'll need to pass the accept header that
tells the API to return data in XML format.

In HTTPAPI you do this with an "xproc" (exit procedure). This is a subprocedure that is
called during the HTTP transmission that can add additional headers into the HTTP
transmission.

dcl-proc add_accept_header;

dcl-pi *n;
extraHeader varchar(1024);

end-pi;

dcl-c CRLF x'0d25';

extraHeader += 'Accept: text/xml' + CRLF;

end-proc;

Adds the Accept
header for XML

Now the xmlData variable will contain the list of all customers in XML format!

110

Retrieving All Customers As XML (2 of 2)

dcl-ds cust qualified; // <cust
success varchar(5) inz('true'); // success="{string}"
errorMsg varchar(500) inz(''); // errorMsg="{string}" >
num_data int(10);
dcl-ds data dim(999); // <data

custno packed(5: 0) inz(0); // custno="{number}" >
name varchar(30) inz(''); // <name>{string}</name>
dcl-ds address; // <address>

street varchar(30) inz(''); // <street>{string}</street>
city varchar(20) inz(''); // <city>{string}</city>
state char(2) inz(' '); // <state>{string}</state>
postal varchar(10) inz(''); // <postal>{string}</postal>

end-ds; // </address>
end-ds; // </data>

end-ds; // </cust>

xml-into cust %xml(xmlData:'case=any path=cust countprefix=num_');

Once the XML data has been retrieved from the API, you can use XML-INTO to interpret
it (just as DATA-INTO was used for JSON)

Now you can load the subfile from the data in the 'cust' data structure.

111

Generating XML With SQL (1 of 5)

Since IBM i 7.1, Db2 contains functions for creating (or "publishing" as IBM puts it) XML documents.

SQL has its own XML data types, including XML type columns in tables, etc. The XML functions are designed to
work with these internal XML types (which, frankly, makes these functions harder to understand than the JSON
ones.)

First we create the document as an XML type column with these functions:

• XMLELEMENT = Creates an XML element ("XML tag") in an XML document

• XMLATTRIBUTES = Creates XML attributes in an XML element

Next, we create a string from the XML type column with XMLSERIALIZE

• XMLSERIALIZE = Creates (or "serializes") a string from XML data

112

Generating XML With SQL (2 of 5)

select
XMLELEMENT(name "cust",

XMLATTRIBUTES('true' as "success",
'' as "errorMsg"),

XMLELEMENT(name "data",
XMLATTRIBUTES(T1.custno as "custno"),
XMLELEMENT(name "name", trim(T1.name)),
XMLELEMENT(name "address",

XMLELEMENT(name "street", trim(T1.street)),
XMLELEMENT(name "city", trim(T1.city)),
XMLELEMENT(name "state", trim(T1.state)),
XMLELEMENT(name "postal", trim(T1.postal))

)
)

)
from CUSTFILE T1
where T1.custno = 495;

<cust
success="true"
errorMsg="">

<data
custno="495">
<name>Acme Foods</name>
<address>

<street>123 Main Street</street>
<city>Boca Raton</city>
<state>FL</state>
<postal>43064-2121</postal>

</address>
</data>

</cust>

• XMLELEMENT = Creates an XML element ("XML tag") in an XML document
o XMLELEMENT(name "cust", 'xxx') creates <cust>xxx</cust>

• XMLATTRIBUTES = Creates XML attributes in an XML element
• XMLELEMENT(name "data", XMLATTRIBUTES('495' as "custno")) creates <data custno="495">

113

Generating XML With SQL (3 of 5)

select
XMLELEMENT(name "cust",

XMLATTRIBUTES('true' as "success",
'' as "errorMsg"),

XMLAGG(
XMLELEMENT(name "data",

XMLATTRIBUTES(T1.custno as "custno"),
XMLELEMENT(name "name", trim(T1.name)),
XMLELEMENT(name "address",

XMLELEMENT(name "street", trim(T1.street)),
XMLELEMENT(name "city", trim(T1.city)),
XMLELEMENT(name "state", trim(T1.state)),
XMLELEMENT(name "postal", trim(T1.postal))

)
)

)
)
from CUSTFILE T1;

• XMLAGG = Allows us to aggregate data. In this example, for each database row, we want to repeat the
group of XML tags that contain the customer information.

<cust
success="true"
errorMsg="">

<data
custno="495">
<name>Acme Foods</name>
<address>

<street>123 Main Street</street>
<city>Boca Raton</city>
<state>FL</state>
<postal>43064-2121</postal>

</address>
</data>

</cust>

T
h

e
s
e

 ta
g

s
 re

p
e

a
t fo

r e
a

c
h

 ro
w

 in

C
U

S
T

F
IL

E
 b

e
c
a

u
s
e

 th
e

y a
re

 in
s
id

e

X
M

L
A

G
G

114

Generating XML With SQL (4 of 5)

dcl-s data sqltype(CLOB: 5000);

exec sql
select

XMLSERIALIZE(
XMLELEMENT(name "cust",

XMLATTRIBUTES('true' as "success",
'' as "errorMsg"),

XMLELEMENT(name "data",
XMLATTRIBUTES(:custno as "custno"),
XMLELEMENT(name "name", trim(:name)),
XMLELEMENT(name "address",

XMLELEMENT(name "street", trim(:street)),
XMLELEMENT(name "city", trim(:city)),
XMLELEMENT(name "state", trim(:state)),
XMLELEMENT(name "postal", trim(:postal))

)
)

)
AS CLOB(5000) CCSID 1208
VERSION '1.0' INCLUDING XMLDECLARATION)

into :data
from SYSIBM/SYSDUMMY1 T1;

• XMLSERIALIZE = Generates a character string from the XML data type created in the previous examples.

<?xml version="1.0" encoding="UTF-8"?>
<cust success="true" errorMsg="">

<data custno="495">
<name>Acme Foods</name>
<address>

<street>123 Main Street</street>
<city>Boca Raton</city>
<state>FL</state>
<postal>43064-2121</postal>

</address>
</data>

</cust>

After the RPG (with embedded SQL) on the left
runs, the "data" CLOB will contain the following:

• INCLUDING XMLDECLARATION = adds the <?xml>
to the output string.

• CCSID = determines the "encoding"

• VERSION = determines the "version"

115

Generating XML With SQL (5 of 5)

dcl-s sendDoc varchar(5000) inz('');

if data_len > 0;
sendDoc = %subst(data_data:1:data_len);

else;
senddoc = '';

endif;

url = BASEURL + '/' + %char(custno);

monitor;
http_string('PUT': url: sendDoc: 'text/xml');

on-error;
msg = http_error();
return *off;

endmon;

Since SQL VARCHAR is limited to 32K, I usually
like to serialize XML into a CLOB field.

VARCHAR is more convenient to work with in RPG,
though, so I use %subst() to convert the CLOB to a
VARCHAR.

Then, finally, we can send the XML

Notice that the content-type is also set to indicate
XML.

116

Consuming -- Conclusion

In this section, I have:

Shown a relatively simple API call with Watson Language Translation

• Worked with messages 2 different ways
• Interpreted JSON with DATA-INTO

• Interpreted JSON with SQL's JSON_TABLE

• Created JSON with DATA-GEN

• Created JSON with SQL's JSON_OBJECT, JSON_ARRAY

• Worked with HTTP 3 different ways
• HTTPAPI

• Db2 SQL SYSTOOLS http functions

• AXIS C functions

Shown a more sophisticated (and "true" REST) Customer Maintenance API

• Worked with messages 4 different ways
• Created JSON with DATA-GEN

• Interpreted JSON with DATA-GEN

• Interpreted XML with SQL's XMLTABLE

• Created XML with SQL's XMLELEMENT, XMLATTRIBUTE, XMLAGG and XMLSERIALIZE

Providing REST APIs in RPG

118

IBM's Integrated Web Services Server

Fortunately, IBM provides a Web Services tool with IBM i at no extra charge!

The tool takes care of all of the HTTP and XML work for you!

It's called the Integrated Web Services tool.
http://www.ibm.com/systems/i/software/iws/

• Can be used to provide web services

• Can also be used to consume them -- but requires in-depth knowledge of
C and pointers -- I won't cover IBM's consumer tool today.

Requirements:

• IBM i operating system, version 5.4 or newer.

• 57xx-SS1, opt 30: QShell

• 57xx-SS1, opt 33: PASE

• 57xx-JV1, opt 8: J2SE 5.0 32-bit (Java)

• 57xx-DG1 -- the HTTP server (powered by Apache)

Make sure you have the latest cum & group PTFs installed.

119

IBM Navigator for i (old nav)

Click "Internet
Configurations"

120

Internet Configurations (old nav)

IBM Web
Administration for i

121

IBM Navigator for i (new nav)

Double-Click the IBM i
system to work with

122

Bookmarks (new nav)

Open the "Bookmarks"
item in the lower-left,
and click "IBM Web
Administration for I"

123

Web Administration for i

The IWS is under
"Create New Web
Services Server"

The same link is up
here as well – and

is available
throughout the tool

from this link.

124

Create IWS Server (1 of 4)

Server name is used to
generate stuff like object

names, so must be a valid
IBM i object name (10 chars

or less.)

Description can be whatever
you want… should explain

what the server is to be used
for.

125

Create IWS Server (2 of 4)

Two servers are needed

1. One to run Java (application
server)

2. One that handles the web
communications (HTTP server)

A third port is used to communicate

commands between them.

Port numbers must be unique

system-wide.

The wizard will provide defaults that
should work.

126

Create IWS Server (3 of 4)

Here you choose the userid
that the web services server

(but not necessarily your RPG
application) will run under.

The default will be the IBM-
supplied profile QWSERVICE.

But you can specify a
different one if you want. This
user will own all of the objects

needed to run a server that
sits and waits for web service

requests.

127

Create IWS Server (4 of 4)

This last step shows a summary
of your settings.

It's worth making a note of the
Server URL and the Context Root

that it has chosen.

128

We Now Have a Server!

It takes a few seconds to build,
but soon you'll have a server, and

see this screen.

To get back here at a later date,
click on the "Manage" tab, then
the "Application Servers" sub-

tab, and select your server from
the "server" drop-down list.

129

Now What?

Now that we have a web services server, we can add (or "deploy" is the
official term) web services… i.e. programs/subprocedures that can be
called as web services.

• One server can handle many services (programs/procedures)

• The same server can handle both REST and SOAP services

• IBM provides a "ConvertTemp" service as an example.

The "manage deployed services" button can be used to stop/start individual
services as well as add/remove them.

130

GETCUST RPG Program (1 of 2)

PCML with parameter info will
be embedded in the module

and program objects.

Since there's no DCL-PROC,
the DCL-PI works like the old

*ENTRY PLIST

This PREFIX causes the file to
be read into the CUST data

struct.

Ctl-Opt DFTACTGRP(*NO) ACTGRP('WEBAPI') PGMINFO(*PCML:*MODULE);

Dcl-F CUSTFILE Usage(*Input) Keyed PREFIX('CUST.');

Dcl-DS CUST ext extname('CUSTFILE') qualified End-DS;

Dcl-PI *N;
CustNo like(Cust.Custno);
Name like(Cust.Name);
Street like(Cust.Street);
City like(Cust.City);
State like(Cust.State);
Postal like(Cust.Postal);

End-PI;

Dcl-PR QMHSNDPM ExtPgm('QMHSNDPM');
MessageID Char(7) Const;
QualMsgF Char(20) Const;
MsgData Char(32767) Const options(*varsize);
MsgDtaLen Int(10) Const;
MsgType Char(10) Const;
CallStkEnt Char(10) Const;
CallStkCnt Int(10) Const;
MessageKey Char(4);
ErrorCode Char(8192) options(*varsize);

End-PR;

131

GETCUST RPG Program (2 of 2)

This API is equivalent
to the CL

SNDPGMMSG
command, and

causes my program
to end with an

exception ("halt")

When there are no
errors, I simply return

my output via the
parameter list. IWS

takes care of creating
JSON or XML for me!

Dcl-DS err qualified;
bytesProv Int(10) inz(0);
bytesAvail Int(10) inz(0);

End-DS;

Dcl-S MsgDta Varchar(1000);
Dcl-S MsgKey Char(4);
Dcl-S x Int(10);

chain CustNo CUSTFILE;
if not %found;

msgdta = 'Customer not found.';
QMHSNDPM('CPF9897': 'QCPFMSG *LIBL': msgdta: %len(msgdta):

'*ESCAPE'
: '*PGMBDY': 1: MsgKey: err);

else;
Custno = Cust.Custno;
Name = Cust.name;
Street = Cust.Street;
City = Cust.City;
State = Cust.State;
Postal = Cust.Postal;

endif;

*inlr = *on;

132

PCML so IWS Knows Our Parameters

Our GETCUST example gets input and output as normal parameters. To use
these with IWS, we need to tell IWS what these parameters are. This is done
with an XML document that is generated by the RPG compiler.

PCML = Program Call Markup Language

• A flavor of XML that describes a program's (or *SRVPGM's) parameters.

• Can be generated for you by the RPG compiler, and stored in the IFS:

CRTBNDRPG PGM(xyz) SRCFILE(QRPGLESRC)

PGMINFO(*PCML)

INFOSTMF('/path/to/myfile.pcml')

Ctl-Opt PGMINFO(*PCML:*MODULE);

• Or can be embedded into the module/program objects themselves, with an
H-spec or CTL-OPT:

133

GETCUST as a REST API

Remember that in REST (sometimes called 'RESTful') APIs:

• the URL points to a "noun" (or "resource")

• the HTTP method specifies a "verb" like GET, POST, PUT or DELETE.
(Similar to a database Create, Read, Update, Delete…)

• REST sounds nicer than CRUD, haha.

IWS structures the URL like this:

http://address:port/context-root/root-resource/path-template

• context-root = Distinguishes from other servers. The default context-root is
/web/services, but you can change this in the server properties.

• root-resource = identifies the type of resource (or "noun") we're working
with. In our example, we'll use "/cust" to identify a customer. The IWS will
also use this to determine which program to run.

• path-template = identifies the variables/parameters that distinguish this
noun from others. In our example, it'll be the customer number.

134

Example REST Input

For our example, we will use this URL:

http://address:port/web/services/cust/495

Our URL will represent a customer record. Then we can:

• GET <url> the customer to see the address.

• potentially POST <url> the customer to create a new customer record

• potentially PUT <url> the customer to update an existing customer record

• potentially DELETE <url> to remove the customer record.

Though, in this particular example, our requirements are only to retrieve customer
details, so we won't do all four possible verbs, we'll only do GET.

That means in IWS terminology:

• /web/services is the context root.

• /cust is the root resource (and will point to our GETCUST program)

• /495 (or any other customer number) is the path template.

With that in mind, we're off to see the wizard… the wonderful wizard of REST.

135

REST Wizard (1 of 10)

The type (dropdown) should be REST.

You can use a program or SQL statement – for this example, I'll specify an ILE program and type the
IFS path of the GETCUST program.

136

REST Wizard (2 of 10)

resource name is 'cust',
because we want /cust/ in

the URL.

description can be
whatever you want.

PATH template deserves
its own slide

137

Path Templates

You can make your URL as sophisticated as you like with a REST service. For
example:

• Maybe there are multiple path variables separated by slashes

• Maybe they allow only numeric values

• Maybe they allow only letters, or only uppercase letters, or only lowercase, or
both letters and numbers

• maybe they have to have certain punctuation, like slashes in a date, or
dashes in a phone number.

Path templates are how you configure all of that. They have a syntax like:

{ identifier : regular expression }

• The identifier will be used later to map the variable into a program's
parameter.

• The regular expression is used to tell IWS what is allowed in the parameter

138

REST Wizard (3 of 10)

Secure transport
determines whether or not

SSL (TLS) is required.

Authentication method
*BASIC will require a

userid/password.

139

Path Template Examples

For our example, we want /495 (or any other customer number) in the URL, so
we do:

/{custno:\d+} identifier=custno, and regular expression \d+ means

\d = any digit, + = one or more

As a more sophisticated example, consider a web service that returns inventory in a
particular warehouse location. The path template might identify a warehouse location in
this syntax

/Milwaukee/202/Freezer1/B/12/C

These identify City, Building, Room, Aisle, Slot and Shelf. The path template might be

/{city:\w+}/{bldg:\d+}/{room:\w+}/{aisle:[A-Z]}/{slot:\d\d}/{shelf:[A-E]}

\w+ = one or more of A-Z, a-z or 0-9 characters.

Aisle is only one letter, but can be A-Z (capital)

slot is always a two-digit number, from 00-99, \d\d means two numeric digits

Shelf is always capital letters A,B,C,D or E.

IWS uses Java regular expression syntax. A tutorial can be found here:

https://docs.oracle.com/javase/tutorial/essential/regex/

140

REST Wizard (4 of 10)

"Detect length fields" will
look for fields named

ending with _LENGTH and
treat them as the number

of elements for any arrays.

We also need to tell it
which parameters are used
for input and output from

our program.

141

REST Wizard (5 of 10)

We can control how blanks are
trimmed from character fields.

We can also control which HTTP
status codes are returned for

success/failures.

142

REST Wizard (6 of 10)

Since this example just retrieves a
customer, I used the "GET" method.

The output document will be JSON.

The input parameter comes from the
"Path" portion of the URL.

143

REST Wizard (7 of 10)

Similar to when the server was
created, we can specify which

userid this particular API will run
under.

The most secure method is to create
a user specially for this, and give it
the minimum possible authority for

the API to work.

144

REST Wizard (8 of 10)

This step lets you configure a library
list that will be in effect when the

API is run.

145

REST Wizard (9 of 10)

This screen lets you control which
environment variables will be set

when the API runs.

This is a bit more "advanced", but if
you wanted to know the IP address
of the API consumer, for example,

you could enable the
REMOTE_ADDR variable, then

retrieve that variable in your RPG
program.

146

REST Wizard (10 of 10)

The last step shows all of the
options you selected (for your

review).

When you click FINISH it will create
the REST API

147

Wait For the API to Install

The hourglass indicates that
creating the API is in progress.

Click "Refresh" a couple of times
until it shows as "Running"

148

Looking Up the URI of Your API (1 of 2)

To determine the URI needed to call your new API, select your service, and
click "Properties"

149

Looking Up the URI of Your API (2 of 2)

The base resource URL is the URI (base resource name) of the API you created. It does not
contain any of the variable parts of the URI such as customer number, however.

150

SOAPUI REST Testing (1 of 2)

Since it's hard to test other methods (besides GET) in a browser, it's good to
have other alternatives. Recent versions of SoapUI have nice tools for testing
REST services as well.

Choose File / New REST Project, and type the URL, then click OK

151

SOAPUI REST Testing (2 of 2)
Here you can change the method
and the resource ("noun") easily,

and click the green "play" button to
try it.

It can also help make XML, JSON or
HTML output "prettier" by

formatting it for you.

152

SOAPUI REST Testing (1 of 3)

Once the API has finished creating, you can test it out in SoapUI

Choose File / New REST Project, and type the URL, then click OK

If you don't know the URL, you can get it (as "Base Resource URL") from the
properties of your service in IWS.

153

SOAPUI REST Testing (2 of 3)

Here you can change the method
and the resource ("noun") easily,

and click the green "play" button to
try it.

It can also help make XML, JSON or
HTML output "prettier" by

formatting it for you.

154

SOAPUI REST Testing (3 of 3)

To add the "accept" header (to
control the output document type)

1. Click "Headers" at the bottom

2. Click the green + symbol

3. Give it the name "accept"

4. Type the media type under value

155

Do It Yourself

IWS is a neat tool, but:

• Maximum of 7 params

• Can't nest arrays inside arrays

• Supports only XML or JSON

• Very limited options for security

• doesn't always perform well

• limited authentication types

• limited to only XML or JSON, no other options

• etc.

Writing your own:

• Gives you complete control

• Performs as fast as your RPG code can go.

• Requires more knowledge/work of web service technologies such as XML and JSON

• You can accept/return data in any format you like. (CSV? PDF? Excel? No problem.)

• Write your own security. UserId/Password? Crypto? do whatever you want.

• The only limitation is your imagination.

156

Create an HTTP Server

Click “Setup” to create a
new web server.

Do not create a web
services server at this
time. That is for IBM’s

Integrated Web Services
tool, currently used only

for SOAP.

Instead, create a “normal”
HTTP server.

157

The “Server Name”

The “Server Name” controls:

•The job name of the server jobs

•The server name you select when editing
configs

•The server name you select when
starting/stopping the server.

158

Server Root

The “server root” is the
spot in the IFS where all
the files for this server
should go.

By convention, it’s always
/www/ + server name.

159

Document Root

The “document root” is the default
location of files, programs, images, etc.
Anything in here is accessible over a
network from your HTTP server.

By convention, it’s always specified as
/www/ + server name + /htdocs

160

Set Port Number

You cannot have two different servers
using the same port number at the same
time. Select a port number that's not in
use for other things.

161

Access Log

An “access log” will log all accesses
made to the HTTP server. Useful to track
server activity.

162

Access Log Retension

Over time, access logs can get quite
large. The HTTP server can automatically
delete data over a certain age.

I like to keep mine for about a week.

163

Summary Screen

This screen summarizes the settings
you provided. When you click
“Finish”, it will create the server
instance.

164

Getting to the Server

• You should now be on the settings page for your new HTTP server. However,
if you navigate away and need to get back you can:

• Return to the Web Administration for i page

• Click the HTTP Servers tab

• Select your server from the "Server" drop-down

165

Edit Configuration File

Scroll down to the “Tools” section.

Use “edit configuration file” to enter
Apache directives.

Tip: You can use “Display
configuration file” to check for errors
in the Apache configuration.

166

Add Apache Options For Your Server

DefaultFsCCSID 37

DefaultNetCCSID 1208

CgiConvMode %%MIXED/MIXED%%

ScriptAlias /api/customers /qsys.lib/skwebsrv.lib/cust001r.pgm

<Directory /qsys.lib/skwebsrv.lib>

SetEnv QIBM_CGI_LIBRARY_LIST "QTEMP;QGPL;SKLEMENT;SKWEBSRV;YAJL"

require valid-user

AuthType basic

AuthName "SK REST APIs"

PasswdFile %%SYSTEM%%

UserId %%CLIENT%%

</Directory>

I recommend adding the following options to your configuration file

These should be customized for your environment and are described on the
next slide.

167

Character Set Options

DefaultFsCCSID 37

DefaultNetCCSID 1208

CgiConvMode %%MIXED/MIXED%%

These options control how Apache will translate data between character
encodings.

• DefaultFsCCSID = should be set to your normal EBCDIC CCSID.
o 37 = The normal EBCDIC for the USA where I live. Replace with the best one for

where you live. Never use 65535.

o Jobs will run under this CCSID.

o This is important if you plan to use the SQL HTTP, JSON or XML functions in your
API

• DefaultNetCCSID = should be the CCSID of the data as you want it sent over
the network
o I always recommend UTF-8 (CCSID 1208) for this. UTF-8 is the character set of

the web. It is what you should always use when working with XML and JSON
documents.

• CgiConvMode = controls what/how Apache translates with the above
CCSIDs. I've found %%MIXED/MIXED%% works nicely for APIs.

168

URI to Object Mapping

ScriptAlias /api/customers /qsys.lib/skwebsrv.lib/cust001r.pgm

Aliases tell Apache how to map from a path in the URI to an object on disk

• Regular Alias keyword will download the object from disk

• The ScriptAlias keyword denotes that you should run it as a program and
download its output rather than downloading the object itself.

• If URL starts with /api/customers, Apache will CALL PGM(SKWEBSRV/CUST001R)

http://ibmi.example.com/api/customers/495

• Consumer connects to: ibmi.example.com

• Apache sees the /api/customers and calls SKWEBSRV/CUST001R

• Our program can read the 495 (customer number) from the URL itself.

169

Library Options

<Directory /qsys.lib/skwebsrv.lib>

SetEnv QIBM_CGI_LIBRARY_LIST "QTEMP;QGPL;SKLEMENT;SKWEBSRV;YAJL"

require valid-user

AuthType basic

AuthName "SK REST APIs"

PasswdFile %%SYSTEM%%

UserId %%CLIENT%%

</Directory>

The <Directory> section specifies options used whenever accessing the given path
/qsys.lib/skwebsrv.lib -- i.e. anytime it uses something in the SKWEBSRV library.

• QIBM_CGI_LIBRARY_LIST is how we can control the library list when our API is called.

• Require valid-user means that Apache will only allow access for authenticated users

• AuthType specifies the authentication type -- basic is a plaintext userid/password

• AuthName is a string sent to the user to tell him/her what they are signing in to

• PasswdFile %%SYSTEM%% means you will sign on with a standard IBM i user profile and password. It's also
possible to set up other methods such as LDAP, Kerberos, or your own file containing users/passwords

• UserId is which user profile the API is run under. %%CLIENT%% means it will use the profile that you signed into
the PasswdFile with.

170

Using RegExp For Program Names

ScriptAliasMatch /api/([a-z0-9]+)/.* /qsys.lib/skwebsrv.lib/$1.pgm

ScriptAliasMatch /api/([a-z0-9]+)$ /qsys.lib/skwebsrv.lib/$1.pgm

People often ask me how to avoid the need for editing the Apache configuration each time you want to
add a new API.

Here's an alternative way to do ScriptAlias that might help.

• ScriptAliasMatch lets you do a ScriptAlias using a regular expression

• () allows a matching string to be stored in a variable. The first parenthesis are stored in variable 1, if there's a
second (only one is shown in this example) it'd be stored in variable 2, etc.

• $1 returns the value of variable 1. (use $2 for variable 2, $3 for variable 3, etc.)

• In this example a URI such as /api/cust001r would store the string cust001r into variable 1

• Since $1 is cust001r, it would CALL SKWEBSRV/CUST001R

• If the URL contained a different string after /api/ then that would be the program called.

I prefer not to use this method because I like my API names to be friendly like "/api/customers", rather

than follow an object naming convention like "/api/cust001r"

171

Add Custom Directives

Scroll down to the bottom of the file.

Type the directives (as shown) and
click “Apply” to save your changes.

172

Start New Apache Server

Click the green “start” button at the
top to start your new server.

You can also start from 5250 with:

STRTCPSVR *HTTP HTTPSVR(SKWEBSRV)

173

CUST001R Example

CUST001R is the provider that we were calling with HTTPAPI earlier. (The "more
sophisticated" Customer Maintenance CRUD API.)

• There is quite a lot to it -- it does not make sense to post the entire program here

• Instead, please download the source from my web site

• But, I will go over some of the important highlights in the following slides.

Think about what we need to do!

• Apache will call us

• It will provide the JSON or XML document sent from the consumer via "standard input"

• We can send back a JSON or XML document via "standard output"

• We'll need to know the URI to determine the customer number

• We'll need to know the content-type and accept headers so we know which data format to
read and/or send back.

174

IBM Routines You'll Need

ctl-opt option(*srcstmt: *nodebugio: *noshowcpy);

dcl-pr QtmhWrStout extproc(*dclcase);
DtaVar pointer value;
DtaVarLen int(10) const;
ErrorCode char(32767) options(*varsize);

end-pr;

dcl-pr QtmhRdStin extproc(*dclcase);
DtaVar pointer value;
DtaVarSize int(10) const;
DtaLen int(10);
ErrorCod4 char(32767) options(*varsize);

end-pr;

dcl-pr getenv pointer extproc(*dclcase);
var pointer value options(*string);

end-pr;

These definitions allow you to call IBM-provided
subprocedures for

• QtmhRdStin reads standard input (message
sent to provider)

• getenv etrieves an environment variable.

• QtmhWrStout writes data to standard output.

(message sent back to consumer)

The Qtmh procedures are in service program
QHTTPSVR/QZHBCGI, so you will need to bind to
that service program when you create your
RPG program.

175

Important Environment Variables

env = getenv('REQUEST_METHOD');
if env <> *null;

method = %str(env);
endif;

env = getenv('REQUEST_URI');
if env <> *null;

url = %str(env);
endif;

env = getenv('CONTENT_TYPE');
if env <> *null;

inputType = %str(env);
endif;

env = getenv('HTTP_ACCEPT');
if env <> *null;

outputType = %str(env);
endif;

The getenv() API can be used to retrieve some
important information.

• REQUEST_METHOD the HTTP method used to
call your API

• REQUEST_URI the URI used to call your API

• CONTENT_TYPE the content-type header
(media type of data sent from consumer)
HTTP_ACCEPT the accept header (media

type of data to send back to the consumer)

176

Extracting the Customer Number from the URI

dcl-c REQUIRED_PART const('/api/customers/');

dcl-s pos int(10);
dcl-s custpart varchar(50);
dcl-s url varchar(1000);
dcl-s custid packed(5: 0);

monitor;
pos = %scan(REQUIRED_PART:url) + %len(REQUIRED_PART);
custpart = %subst(url: pos);
custid = %int(custpart);

on-error;
custid = 0;

endmon;

if custid = 0 and method <> 'GET' and method <> 'POST';
errMsg = 'You must supply a customer ID!';
httpstatus = 404;
// send back error

endif;

To extract the customer number from the URI,
simply use %SCAN to find the spot after
/api/customers, and substring it out.

177

What Do We Do With All Of This?

I will not show every detail, but consider what we can do with the information we have:

• With the customer number, we can retrieve the existing database record (if any)

• With the HTTP method, we know whether we want to read, update, write or delete the record.

• We can check the content-type for 'application/json' or 'text/xml' to determine if the input data is JSON
or XML

• We can check the accept header for 'application/json' or 'text/xml' to determine which data type to
send back.

At this point, the program will read the existing database record into the 'cust' data structure. I won't
show that logic, since you probably already know how to work with databases in RPG.

Next, we'll need to read the input message (if doing a PUT or POST) and update the database. (I won't
show the database logic.)

And we'll need to create output messages containing the customer information and send them back.

178

Reading a JSON Input Message

dcl-proc loadInputJson;

dcl-pi *n ind;
cust likeds(cust_t);

end-pi;

dcl-s loaded ind inz(*off);

monitor;
data-into cust %DATA('*STDIN'

: 'case=convert +
allowmissing=yes')

%PARSER('YAJLINTO');
loaded = *on;

on-error;
httpstatus = 400;
loaded = *off;

endmon;

return loaded;

end-proc;

dcl-ds cust_t qualified template;
success ind inz(*on);
errorMsg varchar(500) inz('');
dcl-ds data;

custno packed(5: 0) inz(0);
name varchar(30) inz('');
dcl-ds address;

street varchar(30) inz('');
city varchar(20) inz('');
state char(2) inz(' ');
postal varchar(10) inz('');

end-ds;
end-ds;

end-ds;

YAJLINTO allows the special value
of *STDIN to read the "standard
input" (data sent from the
consumer).

179

Writing a JSON Output Message

dcl-proc sendResponseJson;

dcl-pi *n ind;
cust likeds(cust_t) const;
httpStatus packed(3: 0) value;

end-pi;

dcl-s success ind inz(*on);
dcl-s responseJson varchar(100000);

monitor;
data-gen cust

%data(responseJson)
%gen('YAJLDTAGEN'

: '{ +
"write to stdout": true, +
"http status": ' + %char(httpstatus) +

'}');
on-error;

httpstatus = 500;
success = *off;

endmon;

return success;
end-proc;

YAJLDTAGEN provides options:

• write to stdout = automatically send JSON
document back to consumer

• http status option = set the HTTP status
code

Because of these options provided by
YAJLINTO and YAJLDTAGEN, you do not
need to manually call the IBM-provided
QtmhRdStin and QtmhWrStout procedures if
you use YAJL.

180

What if XML is Required?

The YAJLINTO and YAJLDTAGEN have built-in features for writing APIs that made reading and writing
the JSON fairly simple. For the most part, DATA-INTO and DATA-GEN do all of the work!

However, that is not the case when you want to use SQL. For examples of reading and writing XML
messages, I will show you the process you need to use when SQL is used to interpret/format the
message.

Note that even though this example is for XML -- the same technique could've been used for JSON,
too. We'd simply use the JSON_TABLE, JSON_OBJECT, et al functions instead of the XML ones.

181

Reading an XML Input Message (1 of 3)

dcl-proc loadInputXml;

dcl-pi *n ind;
cust likeds(cust_t);

end-pi;

dcl-s myXml sqltype(CLOB: 100000);
dcl-s success varchar(5) inz('true');
dcl-s errMsg varchar(500);
dcl-s RcvLen int(10);
dcl-c MISSING -1;
dcl-s start int(10);

dcl-ds Result qualified;
custno like(CUSTFILE.custno);
name like(CUSTFILE.name);
street like(CUSTFILE.street);
city like(CUSTFILE.city);
state like(CUSTFILE.state);
postal like(CUSTFILE.postal);

end-ds;

dcl-ds Status qualified inz;
custno int(5);
name int(5);
street int(5);
city int(5);
state int(5);
postal int(5);
NullInds int(5) dim(6) pos(1);

end-ds;

dcl-s myXml sqltype(CLOB: 100000);

QtmhRdStin(%addr(myXml_data)
: %size(myXml_data)
: RcvLen
: ignore);

myXml_len = RcvLen;

To use SQL, I must read standard input myself. By
calling QtmhRdStin(). Here it is loaded straight
into myXML, which is a CLOB field.

182

Reading an XML Input Message (2 of 3)

exec SQL
select ifnull(success, 'null'), ifnull(errorMsg, '')

into :success, :errMsg
from xmltable(

'$doc/cust'
passing xmlparse(DOCUMENT :myXml) as "doc"
columns

success varchar(5) path '@success',
errorMsg varchar(500) path '@errorMsg'

) as X1;

<cust success="false" errorMsg="some message here">
… more data here …

</cust>

XMLPARSE interprets a character string
representing an XML document and returns
a corresponding SQL XML type column.

XMLTABLE converts the XML column into a
(virtual) XML table that you can query with a
select statement.

• passing specifies the input XML document

• '$doc/cust' is the XPath that determines
each row in the output table

• columns specifies the columns in the
output table

• Each column listed has a path option with
an XPath relative to the row

In this case, $doc/cust/@success means

• $doc = the document (from "passing")

• /cust = the <cust> XML tag

• @success = the success attribute within
that tag

183

Reading an XML Input Message (3 of 3)

exec SQL
select *

into :Result:Status.NullInds
from xmltable(

'$doc/cust/data'
passing xmlparse(DOCUMENT :myXml) as "doc"
columns

custno decimal(5, 0) path '@custno',
name varchar(30) path 'name',
street varchar(30) path 'address/street',
city varchar(20) path 'address/city',
state char(2) path 'address/state',
postal varchar(10) path 'address/postal'

) as X2;

<?xml version="1.0" encoding="UTF-8"?>
<cust success="true" errorMsg="">

<data custno="495">
<name>Acme Foods</name>
<address>

<street>123 Main Street</street>
<city>Boca Raton</city>
<state>FL</state>
<postal>43064-2121</postal>

</address>
</data>

</cust>

• One row per /cust/data tag within the document

• Observe how each column is extracted from within
that data tag by its own path.

• If any columns are missing, they will be set to null,
so can be checked via the Status data structure.

• As you may be able to see… processing XML with
SQL is significantly more complex than
reading/writing JSON with DATA-INTO/GEN

184

Writing the XML Output Message (1 of 2)

dcl-s data sqltype(CLOB : 100000);

exec sql
select

XMLSERIALIZE(
XMLELEMENT(name "cust",

XMLATTRIBUTES(:success as "success",
:errMsg as "errorMsg"),

XMLAGG(
XMLELEMENT(name "data",

XMLATTRIBUTES(T2.custno as "custno"),
XMLELEMENT(name "name", trim(T2.name)),
XMLELEMENT(name "address",

XMLELEMENT(name "street", trim(T2.street)),
XMLELEMENT(name "city", trim(T2.city)),
XMLELEMENT(name "state", trim(T2.state)),
XMLELEMENT(name "postal", trim(T2.postal))

)
)

)
)

AS CLOB(100000) CCSID 1208
VERSION '1.0' INCLUDING XMLDECLARATION)

into :data
from CUSTFILE T2;

Writing the list of all customers is somewhat
easier because we can use XMLAGG to read
directly from the database table (CUSTFILE)
and build the whole XML message at once.

185

Writing the XML Output Message (2 of 2)

dcl-s hdr varchar(500);
dcl-s utfdata varchar(200000) ccsid(*utf8);

if success = 'true';
hdr = 'Status: 200' + CRLF

+ 'Content-type: application/xml; charset=UTF-8' + CRLF
+ CRLF;

else;
hdr = 'Status: 500' + CRLF

+ 'Content-type: application/xml; charset=UTF-8' + CRLF
+ CRLF;

endif;

if data_len = 0;
utfdata = '';

else;
utfdata = %subst(data_data:1:data_len);

endif;

QtmhWrStout(%addr(hdr:*data) : %len(hdr) : ignore);
QtmhWrStout(%addr(utfdata:*data): %len(utfdata): ignore);

To write the output, I create a list of HTTP
headers separated by CRLF characters.

Sending CRLF on a line by itself means that I'm
done with the headers. Everything after that will
be considered the document itself.

Notice that I'm telling Apache that my document
is already in a UTF-8 character set. I am
converting it using RPG's built-in CCSID(*UTF8)
support.

The QtmhWrStout() API sends the data back to
Apache, who will send it to the consumer.

You can call QtmhWrStout() as many times as
you wish, the data will be appended to create a
single return document.

186

This Presentation

You can download a PDF copy of this presentation and its
code samples from

http://www.scottklement.com/presentations/

Thank you!

